Tuesday, 5 September 2017

3)Sqoop Tool1: sqoop-import:

Tool 1: sqoop-import:

  • Using the import tool imports an individual table from an RDBMS to HDFS. 
  • Each row from a table is represented as a separate record in HDFS. 
  • Records can be stored as text files (i.e,one record per line), or in binary representation as Avro or SequenceFiles.

Tool Syntax:
sqoop import (generic-args) (import tool-args)
or
sqoop-import (generic-args) (import tool-args)

Arguments are grouped into collections organized by function:
Following below:

  1. Common arguments
  2. Validation arguments More Details
  3. Import control arguments:
  4. Parameters for overriding mapping
  5. Incremental import arguments:
  6. Output line formatting arguments:
  7. Input parsing arguments:
  8. Hive arguments:
  9. HBase arguments:
  10. Accumulo arguments:
  11. Code generation arguments:
  12. Additional import configuration properties:

We will cover each collection of arguments one by one,

1.Common arguments


Argument
Description
--connect <jdbc-uri>
To Specify JDBC connect string containing hostname or IP address (optionally port) followed by database name. It is mandatory argument.
Example:–connect jdbc:mysql://localhost/sqoop_db

--connection-manager <class-name>
Specify connection manager class name It is optional.
Example: –connection-manager org.apache.sqoop.manager.GenericJdbcManager
--driver <class-name>
Manually specify JDBC driver class to use. Example: com.mysql.jdbc.Driver
--hadoop-mapred-home <dir>
Override $HADOOP_MAPRED_HOME
--help
Print usage instructions
--password-file
Set path for a file containing the authentication password
-P
Read password from console
--password <password>
Set authentication password
--username <username>
Set authentication username
--verbose
Print more information while working
--connection-param-file <filename>
Optional properties file that provides connection parameters
--relaxed-isolation
Set connection transaction isolation to read uncommitted for the mappers.

Example 1: will cover the following arguments --connect, --connection-manager, --driver

hadoop@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --connection-manager org.apache.sqoop.manager.GenericJdbcManager --driver com.mysql.jdbc.Driver --username root --password root --table student -m1;

Example 2: a file containing the authentication password using arugument --password-file

Steps to create password file:

Step 1:create a password file
    hadoop@Mano:~$ echo -n "root">.password
Note:
-n - Do not output a trailing newline.

Step 2: move the password to HDFS location
     hadoop@Mano:~$ hadoop fs -put .password /user/hadoop

Command:
hadoop@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root
--password-file /user/hadoop/.password --table student -m 1;

Example 3:Read password from console

Command:
hadoop@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root -P --table student -m 1;


Example 4: using argument --verbose, most prefer more debugging

Command:
hadoop@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root -password root  --table student -m 1 --verbose;

Example 5: using argument --connection-param-file , which hold the connection related key - value pairs

like this ==>sqoop.export.records.per.statement=1 save as separate .properties file and load using that argument

Status of Common arguments:


Argument
Description
Example
--connect <jdbc-uri>
To Specify JDBC connect string containing hostname or IP address (optionally port) followed by database name. It is mandatory argument.
Example:–connect jdbc:mysql://localhost/sqoop_db

Done
--connection-manager <class-name>
Specify connection manager class name It is optional.
Example: –connection-manager org.apache.sqoop.manager.GenericJdbcManager
Done
--driver <class-name>
Manually specify JDBC driver class to use. Example: com.mysql.jdbc.Driver
Done
--hadoop-mapred-home <dir>
Override $HADOOP_MAPRED_HOME
Need to try
--help
Print usage instructions
Done
--password-file
Set path for a file containing the authentication password
Done
-P
Read password from console
Done
--password <password>
Set authentication password
Done
--username <username>
Set authentication username
Done
--verbose
Print more information while working
Done
--connection-param-file <filename>
Optional properties file that provides connection parameters
Need to try
--relaxed-isolation
Set connection transaction isolation to read uncommitted for the mappers.
Need to try

2.Validation arguments for More details:


Argument Description
--validate Enable validation of data copied, supports single table copy only.
--validator <class-name> Specify validator class to use.
--validation-threshold <class-name> Specify validation threshold class to use.
--validation-failurehandler <class-name> Specify validation failure handler class to use.

Example 6: using argument --validate

Command:
mano@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1 --validate;

At the end of execute of tool, we can see the status of data validation

17/08/31 10:45:49 INFO mapreduce.JobBase: Validating the integrity of the import using the following configuration
    Validator : org.apache.sqoop.validation.RowCountValidator
    Threshold Specifier : org.apache.sqoop.validation.AbsoluteValidationThreshold
    Failure Handler : org.apache.sqoop.validation.AbortOnFailureHandler

17/08/31 10:45:49 INFO validation.RowCountValidator: Data successfully validated

Example 7: using argument --validator <class>

Command:
mano@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1 --validator org.apache.sqoop.validation.RowCountValidator;

Example 8: using argument --validation-threshold <class>

Command:
mano@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1 --validation-threshold org.apache.sqoop.validation.AbsoluteValidationThreshold;

Example 9: using argument --validation-failurehandler <class>

Command:

mano@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1 --validation-failurehandler org.apache.sqoop.validation.AbortOnFailureHandler

Validation arguments status table:

Argument Description Example
--validate Enable validation of data copied, supports single table copy only. Done
--validator <class-name> Specify validator class to use. Done
--validation-threshold <class-name> Specify validation threshold class to use. Done
--validation-failurehandler <class-name> Specify validation failure handler class to use. Done

3.Import control arguments:

Argument Description
--append Append data to an existing dataset in HDFS
--as-avrodatafile Imports data to Avro Data Files
--as-sequencefile Imports data to SequenceFiles
--as-textfile Imports data as plain text (default)
--as-parquetfile Imports data to Parquet Files
--boundary-query <statement> Boundary query to use for creating splits
--columns <col,col,col…> Columns to import from table
--delete-target-dir Delete the import target directory if it exists
--direct Use direct connector if exists for the database
--fetch-size <n> Number of entries to read from database at once.
--inline-lob-limit <n> Set the maximum size for an inline LOB
-m,--num-mappers <n> Use n map tasks to import in parallel
-e,--query <statement> Import the results of statement.
--split-by <column-name> Column of the table used to split work units. Cannot be used with --autoreset-to-one-mapper option.
--autoreset-to-one-mapper Import should use one mapper if a table has no primary key and no split-by column is provided. Cannot be used with --split-by <col> option.
--table <table-name> Table to read
--target-dir <dir> HDFS destination dir
--warehouse-dir <dir> HDFS parent for table destination
--where <where clause> WHERE clause to use during import
-z,--compress Enable compression
--compression-codec <c> Use Hadoop codec (default gzip)
--null-string <null-string> The string to be written for a null value for string columns
--null-non-string <null-string> The string to be written for a null value for non-string columns

Example 10: using argument --append

it append's data to an existing dataset in HDFS(like new insertions on top of existing data)

mano@Mano:~$ sqoop import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1 --append

Note :So, it will create separate file for new data using append on existing import

Example 11:
using arguments for file formats by default --as-textfile, --as-avrodatafile, --as-sequencefile, --as-parquetfile

using default --as-textfile
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --append -m 1;

using --as-avrodatafile

mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --append -m 1 --as-avrodatafile;
using --as-sequencefile

mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --append -m 1 --as-sequencefile;

using --as-parquetfile

mano@Mano:~$ hadosqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --append -m 1 --as-parquetfile



Example 12: Using argument --boundary-query and --split-by to define the parallel import based on split column

Example:

BoundingValsQuery: SELECT MIN(`id`), MAX(`id`) FROM `employees`

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --boundary-query 'select min(id),max(id) from employees' --split-by id  --delete-target-dir

Example 13:
Using argument --columns

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --columns id,name -m1  --delete-target-dir

Output: Data on HDFS after import from DB
mano@Mano:~$ hadoop fs -cat /user/mano/employees/par*
17/09/02 11:37:59 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1,Mano
2,Prasath
3,Chella
4,Govind

Example 14:
using arguments --autoreset-to-one-mapper, --delete-target-dir

Command:

mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --autoreset-to-one-mapper --delete-target-dir

Example 15:
Using argument --query ,--target-dir, --where clause

Note:
While using --query argument must specify the target directory, else it fails

Command:

mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --query 'select s.id,e.name from employees e join students s on e.id=s.id where $CONDITIONS' --target-dir '/MANO/Sqoop_import_tabl'e --split-by id --delete-target-dir

Example 16:
Using argument --warehouse-dir , it will defines a parent directory for import but not the --target-dir

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees --warehouse-dir '/MANO/Sqoop_import_tabl'e --split-by id --delete-target-dir

Compressing Imported Data:


Before proceeding to read compression, make sure you have installed the codec on hadoop  

If not please, use refer link ==>  https://my-learnings-abouthadoop.blogspot.in/2017/09/snappy-installation-on-ubuntu.html

We need to use –compress option along with –compression-code with codec classname.

Below are the classname of compressions:
  1. org.apache.hadoop.io.compress.GzipCodec
  2. org.apache.hadoop.io.compress.DefaultCodec
  3. org.apache.hadoop.io.compress.BZip2Codec
  4. org.apache.hadoop.io.compress.SnappyCodec
i)Gzip Compression:

Classname:org.apache.hadoop.io.compress.GzipCodec

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1  --compress --compression-codec org.apache.hadoop.io.compress.GzipCodec --delete-target-dir






ii)DefaultCodec:
Classname:org.apache.hadoop.io.compress.DefaultCodec

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1  --compress --compression-codec org.apache.hadoop.io.compress.DefaultCodec --delete-target-dir





iii)BZip2 Compression:
Classname:org.apache.hadoop.io.compress.BZip2Codec

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1  --compress --compression-codec org.apache.hadoop.io.compress.BZip2Codec --delete-target-dir





iv)Snappy Compression:

Classname: org.apache.hadoop.io.compress.SnappyCodec

Command:
mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table employees -m 1  --compress --compression-codec org.apache.hadoop.io.compress.SnappyCodec --delete-target-dir


Import control arguments status table:


Argument Description Example
--append Append data to an existing dataset in HDFS Done
--as-avrodatafile Imports data to Avro Data Files Done
--as-sequencefile Imports data to SequenceFiles Done
--as-textfile Imports data as plain text (default) Done
--as-parquetfile Imports data to Parquet Files Done
--boundary-query <statement> Boundary query to use for creating splits Done
--columns <col,col,col…> Columns to import from table Done
--delete-target-dir Delete the import target directory if it exists Done
--direct Use direct connector if exists for the database Need to check
--fetch-size <n> Number of entries to read from database at once. Need to check
--inline-lob-limit <n> Set the maximum size for an inline LOB Need to check
-m,--num-mappers <n> Use n map tasks to import in parallel Done
-e,--query <statement> Import the results of statement. Done
--split-by <column-name> Column of the table used to split work units. Cannot be used with --autoreset-to-one-mapper option. Done
--autoreset-to-one-mapper Import should use one mapper if a table has no primary key and no split-by column is provided. Cannot be used with --split-by <col> option. Done
--table <table-name> Table to read Done
--target-dir <dir> HDFS destination dir Done
--warehouse-dir <dir> HDFS parent for table destination Done
--where <where clause> WHERE clause to use during import Done
-z,--compress Enable compression Done
--compression-codec <c> Use Hadoop codec (default gzip) Done
--null-string <null-string> The string to be written for a null value for string columns Need to check
--null-non-string <null-string> The string to be written for a null value for non-string columns Need to check

Note:
The --null-string and --null-non-string arguments are optional. If not specified, then the string "null" will be used.

4)Parameters for overriding mapping: 
Sqoop is pre-configured to map most SQL types to appropriate Java or Hive representatives. However the default mapping might not be suitable in all the cases.

overridden by

--map-column-java = for changing mapping to Java
--map-column-hive = for changing Hive mapping


Argument Description
--map-column-java <mapping> Override mapping from SQL to Java type for configured columns.
--map-column-hive <mapping> Override mapping from SQL to Hive type for configured columns.

Syntax:
--map-column-java <name of column>=<new type>, <name of column>=<new type>..etc.,
i)--map-column-java argument

Command:

mano@Mano:~$ sqoop-import --connect jdbc:mysql://localhost/sqoop_test --username root --password root --table students --map-column-java id=Integer,name=String --autoreset-to-one-mapper

Parameters for overriding mapping status table:


Argument Description Example
--map-column-java <mapping> Override mapping from SQL to Java type for configured columns. Done
--map-column-hive <mapping> Override mapping from SQL to Hive type for configured columns. Need to check
 
Please follow the link for further ==>Sqoop_Page 4

No comments:

Post a Comment

Fundamentals of Python programming

Fundamentals of Python programming: Following below are the fundamental constructs of Python programming: Python Data types Python...